the propagation step thereby terminating the radical butylcatechol chain reaction, e.g., hydroquinone (HQ), 4-*tert*- butyl-4-methy

butylcatechol (TBC), 4-methoxyphenol, 2,6-di-*tert*butyl-4-methylphenol (BHT), *etc*.

Student Corner

# **Alkyl Metal Complexes**

K. Sarath D. Perera

Senior Professor in Chemistry, Department of Chemistry, The Open University of Sri Lanka

An alkyl-metal complex has at least one Metal Carbon (M-C)  $\sigma$ - or  $\pi$ -bond. Grignard reagent (RMgX) and LiR are the most common alkyl-metal reagents used in organic synthesis. ZnEt<sub>2</sub> and EtZnI are the first metal alkyls prepared by Edward Frankland in 1848.

## Synthetic routes to metal alkyls (M-R)

There are many ways to synthesize metal-alkyls. Here, the appropriate aliphatic, alkenyl, alkynyl, and aryl groups are considered as alkyl groups (R).

## 1. By reacting a metal directly with RX

This can be considered as an oxidative addition of an organic halide to a zerovalent metal.

## With divalent metals

$$M + R - X \rightarrow R - M - X$$

Some examples are given below.

a) Mg + PhI ---> PhMgI (Grignard reagent)

b) 
$$Zn + EtI \longrightarrow EtZnI$$

- c) Hg + CH<sub>2</sub>=CHCH<sub>2</sub>I  $\longrightarrow$  CH<sub>2</sub>=CHCH<sub>2</sub>HgI
- d) Ca + MeI → MeCaI

Note that structures of some of these reagents are not *monomeric*.

## With monovalent metals

 $2M + RX \rightarrow RM + MX$ 

$$(M = Li, Na, K, Cs; X = Cl, Br, I)$$

The order of the reactivity of organic halides is as follows.

## 2. via Transmetallation

Alkylating agents (containing transferable alkyl groups) can be used to prepare other organometallic compounds as shown below.

$$MX + M'R \rightarrow MR + M'X$$

Magnesium, lithium, aluminium and mercury alkyls are some of the common alkylating agents. This transfer of an alkyl group from one metal to another is known as **transmetallation**.

Some reactions are given below.

- (a)  $[PtBr_2(PPh_3)_2] + 2 EtMgBr \longrightarrow [PtEt_2(PPh_3)_2]$ (b)  $TlCl_3 + 3 LiMe \longrightarrow TlMe_3 + 3 LiCl$ (c)  $[Cp(OC)_2RuBr] + HgPh_2 \longrightarrow [Cp(OC)_2RuPh] + PhHgBr$ (d)  $[Cp(OC)_2RuBr] + LiMe \longrightarrow [Cp(OC)_2RuMe] + LiBr$ (e)  $[Cp_2TiCl_2] + 2 LiMe \longrightarrow [Cp_2TiMe_2] + 2 LiCl$
- (f)  $[Cp_2TiCl_2] + AlMe_3 \longrightarrow [Cp_2TiCl(Me)] + AlClMe_2$
- (g) WCl<sub>6</sub> + 6 AlMe<sub>3</sub>  $\longrightarrow$  [WMe<sub>6</sub>] + 6 AlClMe<sub>2</sub>

AlR<sub>3</sub> usually transfer only **one alkyl** group.

The nucleophilicity of the R<sup>-</sup> varies as given below.

 $NaR > LiR > RMgX > ZnR_{2}$ 

## 3. via Oxidative addition

Alkyl and aryl halides add to coordinatively unsaturated transition metal centres to form metal-carbon bonds. Some examples are given below.

(i)  $[IrCl(PPh_3)_3] + MeI \longrightarrow [IrCl(I)(Me)(PPh_3)_3]$ (ii)  $[Fe(CO)_5] + MeC(=O)CH_2Br \longrightarrow [(MeCOCH_2)FeBr(CO)_4]$ (iii)  $[Pd(PPh_3)_4] + CH_2=CHBr \longrightarrow trans-[PdCl(CH=CH_2)(PPh_3)_2]$ 

Oxidative addition of a C-H bond of a coordinated ligand generates a metallacycle with a M-C bond.

# 4. via Reacting with an electrophile

Some complexes have *nucleophilic* ( $\pi$ -basic) metal

centers: particularly, in complex anions. These metal centers readily react with organic *electrophiles* (R<sup>+</sup>) to give M-C bonds. This process can be considered as a *nucleophilic substitution* on carbon. Some examples are given below.

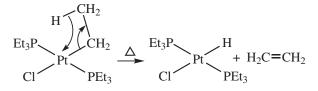
(i)  $Na[Mn(CO)_5] + MeI \longrightarrow [MeMn(CO)_5] + NaI$ 

- (ii)  $Na[CpW(CO)_3] + MeI \longrightarrow [CpW(CO)_3Me] + NaI$
- (iii)  $Na[CpFe(CO)_2] + EtI \longrightarrow [CpFe(CO)_2Et] + NaI$ (iv)  $[CpFe(CO)_2]^- + Ph_3S^+ \longrightarrow [CpFe(CO)_2Ph] + Ph_2S$

# 5. Deinsertion reactions

By the action of heat or light, new M-R, bonds can be formed via the elimination of a small molecule such as C=O, CO<sub>2</sub>, SO<sub>2</sub> or N<sub>2</sub> from complexes containing M-COR, M-CO<sub>2</sub>R, M-SO<sub>2</sub>R and M-N<sub>2</sub>R fragments, respectively.

(i)  $[(OC)_5Mn(C=OMe)] \longrightarrow [(OC)_5MnMe] + CO$ (ii)  $[Cp(OC)_2FeSO_2R] \longrightarrow [Cp(OC)_2FeR] + SO_2$ (iii)  $[(bipy)NiCO_2Me)_2] \longrightarrow [(bipy)NiMe_2] + 2 CO$ 


(iv)  $[(Et_3P)_2Pt(N=NPh)Cl] \longrightarrow [(Et_3P)_2PtPh(Cl]) + N_2$ 

## Reactions of alkyl metal complexes

Most metal alkyls are reactive. They can undergo (i)  $\beta$  hydride abstraction, (ii) reductive elimination, and (iii) insertion and deinsertion reactions. Metal alkyls are prone to be attacked by electrophiles.

## a) β-Hydride abstraction

The major decomposition path of metal alkyls is *via* the  $\beta$ -H abstraction. When it is not possible, other hydrogen transfer reaction (*e.g.*,  $\alpha$ - or  $\gamma$ -H abstraction) may take place.



## b) Reductive elimination reactions

cis-Dialkyl complexes  $[L_nM(R)R']$  can decompose via reductive elimination (RE) of R-R'.

$$ML_n \overset{R}{\underset{R'}{\longleftarrow}} \stackrel{RE}{\underset{R'}{\longrightarrow}} [L_nM] + R \overset{R}{\underset{R'}{\longrightarrow}} R'$$

# c) Insertion reactions

Unsaturated molecules such as CO, alkenes and alkynes insert into M-R bonds forming M-COR, M-CH<sub>2</sub>CH<sub>2</sub>R and M-CH=CHR fragments.

## d) Electrophilic attack on M-R

The reaction of alkyl metal complexes with electrophiles such as H<sup>+</sup>, halogens, cleaves the M-C bond or substitutes the R group.

$$[M] - R + H^{+} \longrightarrow [M]^{+} + R - H$$
$$[M] - R + X_{2} \longrightarrow [M] - X + R - X$$

# Problems

- 1. Predict the product(s) of the following reactions. (i) TiBr<sub>4</sub> + 4 Mg(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub> $\longrightarrow$ (ii) [Cp<sub>2</sub>TiBr<sub>2</sub>] + 2 LiC $\equiv$ CMe  $\longrightarrow$ (iii) cis-[PtBr<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>] + Li(CH<sub>2</sub>)<sub>4</sub>Li  $\longrightarrow$ (iv) cis-[PdBr<sub>2</sub>(PMe<sub>3</sub>)<sub>2</sub>] + SnMe<sub>4</sub>  $\longrightarrow$ (v) [CpRu(CO)<sub>2</sub>]<sub>2</sub>  $\frac{1. Na/Hg}{2. MeI}$ (vi) Me(C=O)Me + Hg(NSiMe<sub>3</sub>)<sub>2</sub>  $\longrightarrow$ (vii) Zn + HgMe<sub>2</sub>  $\longrightarrow$ (viii) 4 (CH<sub>2</sub>=CH)MgBr + SnCl<sub>4</sub>  $\longrightarrow$
- 2. How would you prepare MeTiCl<sub>3</sub>, Me<sub>2</sub>TiCl<sub>2</sub> and TiMe<sub>4</sub> from TiCl<sub>4</sub>.
- 3. Suggest a route to the following reaction.

 $[Mn_2CO)_{10}] \xrightarrow{?} ? \xrightarrow{?} ? \xrightarrow{\Delta} [(OC)_5MnMe]$ 

 Calculate the valence electron count of [Ti(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>4</sub>] and [Ti{CH(SiMe<sub>3</sub>)<sub>2</sub>}<sub>3</sub>]. Comment on the stability of them.